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Steering accuracy is limited by the quantized phase modulation values and the number of phase pixels for
spatial light modulators (SLMs). Conventional methods of beam steering lack optimum precision. In this
letter, a beam steering approach based on horizontally moving phase steps is proposed. Compared with
the conventional methods, this novel method is able to reduce the maximum normalized steering error in
SLM significantly by a factor proportional to the number of pixels. In addition, steering errors of high
steering angles can be drastically reduced by a factor proportional to the product of the number of pixels
and the quantized phase levels; the number of high-precision steering angles increases with the number of
pixels or the quantized phase levels increasing.
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Phase-only spatial light modulators (SLMs) can be used
in beam correction, beam splitting, beam forming, and
beam steering techniques that are utilized in laser beam
weapons and optical communications, among others[1−7].
In free-space optical communication, sub-microradian
pointing accuracy must be reached to maintain precise
transportation between satellites with a distance of over
ten thousand kilometers, and the bit error rate (BER)
of the optical communication system decreases as the
steering accuracy increases[8,9]. In deep space commu-
nication, pointing loss, which decreases as the steering
accuracy increases, is an important measure of system
performance[10,11]. Thus, it is necessary to improve the
steering accuracy to obtain low pointing loss and low
BER. However, most studies regarding SLMs have fo-
cused on steering efficiency, and little work has been pub-
lished on steering accuracy[12−15]. In Ref. [16], a method
was proposed based on the modification of the phase off-
set of all phase pixels to markedly improve the steer-
ing accuracy; however, the new wavefront achieved by
this method followed the rules set by the conventional
method. This means that the phase values of the phase
pixels are always equal to the realized quantized phases
closest to the ideal linear wavefront.

In this letter, we analyze the cause of steering error.
After investigating the relationship between the mean
slope and the wavefront phase step edges, a novel itera-
tive optimization method is presented by modifying the
wavefront. Simulation results indicate that the steering
accuracy of the new steering method is significantly bet-
ter than both the conventional method and the steering
method in Ref. [16], especially for large steering angles.

In a one-dimensional (1D) SLM, each phase pixel can
be regarded as a pixel with a quantized phase. In an
electrically addressed SLM, each pixel takes on differ-
ent phase delays through application of quantized volt-
ages. SLMs can only perform the staircase phase pat-
tern to approximate the ideal linear wavefront because of
the limitation of the voltage quantization. The conven-
tional beam steering method utilizes the quantized phase
threshold, and divides the ideal linear wavefront into a

staircase wavefront with several quantized phase levels;
each phase pixel only performs the phase level closest to
the ideal phase value[17].

Although the conventional method enables control of
the beam deflection, it cannot achieve high-precision
beam steering. The steering error is caused by the disac-
cord between the staircase wavefront and the ideal linear
wavefront. Nevertheless, the fitting line from the linear
fitting of the staircase wavefront can be regarded as a lin-
ear wavefront. The steering angle of the staircase wave-
front is similar to that of the linear fitting wavefront.
The steering angle can also be calculated by the slope k
of the linear fitting wavefront. This indicates that the
results of slope calculation is consistent with the results
using the Fresnel diffraction integral equation to simulate
the far field pattern of staircase wavefront and to obtain
the peak intensity position corresponding to the steering
angle[16].

As previously described, the analysis regarding the
steering angles for the conventional steering method can
be carried out using the method based on slope calcula-
tion. First, θmax = arcsin(λ/2d), where d is the center-
to-center spacing between adjacent phase pixels, θ is the
aimed steering angle, and λ is the laser wavelength, is
defined as the maximum angle of SLM. The distribu-
tions of realized and theoretical steering angles over the
range 0− θmax with normalized coordinates are shown in
Fig. 1, where M is the number of quantized steps be-
tween the phase 0 and 2π, and N is the number of phased
array units. The maximum normalized steering error is
εnorm,max=0.1519, as shown at POS 1. Here, the nor-
malized steering error εnorm = |θ − θstair|/θspot is de-
fined as the difference between the realized steering angle
θstair and the theoretical steering angle θ divided by the
beam spot size θspot = λ/(Nd). Evidently, the perfor-
mance of the conventional beam steering method must
be improved. The empirical formula for εnorm,max =
0.625M−1 was provided in Ref. [16].

The steering angle is determined by the mean slope of
the wavefront; thus, the steering accuracy is closely re-
lated to the mean slope of the wavefront. Analyzing the
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cause of steering errors for conventional method is nec-
essary in order to propose an improved steering method.
The enlarged drawing of wavefront that corresponds to
the maximum steering error at POS 1 of Fig. 1 is shown
in Fig. 2.

In Fig. 2, the error between the steering angles of
the staircase wavefront and the ideal linear wavefront
is θerror = |θ − θstair|, where θstair = arcsin( λk

2πd ) and
θ = arcsin( λkI

2πd ). Hence, the steering error can also be
written as

θerror =
∣∣∣∣arcsin

(
λkI

2πd

)
− arcsin

(
λk

2πd

)∣∣∣∣ , (1)

where k is the slope of the linear fitting wavefront for the
staircase wavefront, and kI is the slope of the ideal wave-
front. As shown in Fig. 2, the number of the left phase
pixels with the phase value of 0 is small, and the num-
ber of the right phase pixels with the phase value of 1.57
rad is excessively large. Thus, the staircase wavefront
increases the mean slope of the whole wavefront, causing
θerror. This indicates that the difference between k and
kI yields θerror. The mean slope k becomes close to the
slope kI of the ideal linear wavefront by modifying the
location of the wavefront steps; the steering error further
decreases and the steering accuracy further improves.

Based on the analysis above, the modification of the
mean slope k can reduce the mean slope error kerror =
|kI − k| to the minimum, leading to the further mini-
mization of the angle error θerror. The mean slope can
be obtained by the slope of the linear fitting wavefront
of the staircase wavefront U(n). If the fitting line is
Ufit(n) = a + kn, where n = 1, 2, · · · , N and a = U − kn,
then the slope can be written as

k =
nU − n · U
n2 − (n)2

, (2)

where U = 1
N

N∑
n=1

U(n), n = 1
N

N∑
n=1

n = N+1
2 , n2 =

1
N

N∑
n=1

n2 = (N+1)(2N+1)
6 , nU = 1

N

N∑
n=1

nU(n). Thus, the

mean slope of the staircase wavefront can be obtained
from Eq. (2).

The relationship between the quantized staircase wave-
front of SLM and phase delays is shown in Fig. 3. If p
represents the number of phase levels and ai represents
the serial number of the phase pixels at the extreme right

Fig. 1. Distributions of the theoretical and realized steering
angles for the conventional method over (M = 4, N = 64).

Fig. 2. Output wavefront at POS 1 with the maximal steer-
ing error.

Fig. 3. θ uantized staircase wavefront wavefront of SLM.

position of phase step with the phase level ϕai(i =
1, 2, · · · , p), then the phase distribution of the staircase
wavefront in a single period can be denoted as U(n) =
φ(n),

U(n) =


ϕa1 1 6 n 6 a1

ϕa2 a1 + 1 6 n 6 a2

...
ϕap ap−1 + 1 6 n 6 ap(ap = N)

. (3)

From Eqs. (2) and (3), the simplified mean slope is

k =
6

N2 − 1

N−1∑
n=1

n
(
1 − n

N

)
(φn+1 − φn). (4)

Using Eq. (4), the mean slope is obtained by the super-
position of different weights of the phase pixels. With
the weight An = n(1 − n/N) of the nth phase pixel, the
mean slope can be written as

k = C

N−1∑
n=1

An(φn+1 − φn), (5)

where C = 6/(N2 − 1) and C is constant when the to-
tal number of phase pixels is fixed. The distribution of
weight An = n(1 − n/N) is shown in Fig. 4 (supposing
N = 64).

Afterward we can obtain: 1) The weight is distributed
in the form of a parabola. Thus, the maximal weight is
located at the center of the SLM at N/2 = 32, and the
weights at the two ends of the SLM are the smallest. 2)
The horizontal movement of the step edges at the center
of the liquid crystal phased array (LCPA) has the least
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influence on the modification of the mean slope, while
the movements of the step edges at the two ends have
the greatest influence on the modification of the mean
slope. This is because the first derivative at the peak
of a parabola is the smallest and the first derivatives at
the two ends are the largest. 3) The mean slope of step
edges with serial numbers smaller than N/2 increases
when moving to the right, and decreases when moving to
the left. In contrast, the mean slope of step edges with
serial numbers larger than N/2 decreases when moving
to the right, and increases when moving to the left.

The effect of the phase step edges with horizontal
movement toward the mean slope can be analyzed as
described above. As shown in Fig. 5, step edges are pro-
duced between phase pixels with different phase values;
hence, the total number of step edges for the staircase
output wavefront is p− 1. Here, the serial number of the
first phase pixel on the left side of the step edge is used
to show the position of the step edge. The serial number
of the phase pixel at the qth step edge is aq. In Fig.
5(a), the right movement of the qth step edge denotes
the phase of the (aq + 1)th phase pixel that decreases by
one phase step. This indicates that the phase has been
modified from ϕaq+1 to ϕaq+1 −∆ϕ, where ∆ϕ = 2π/M.
In Fig. 5(b), the left movement of the qth step edge de-
notes the phase of (aq +1)th phase pixel that increases by
one phase step. This indicates that the phase has been
modified from φq to φq + ∆φ. Under normal conditions,
φaq+1 − φaq is equal to the integral multiple of ∆φ.

Fig. 4. Weight values distribution of phase pixels (N = 64).

Fig. 5. Relocation of the step edges to the (a) right and
(b) left.

Fig. 6. Method to reduce the steering error through the
modification of the wavefront.

According to Eq. (5), the mean slope without move-
ment can be expressed as

k0 =C
[ aq−1∑

n=1

An(φn+1 − φn) + Aaq (φaq+1 − φaq )

+
N−1∑

n=aq+1

An(φn+1 − φn)
]
. (6)

After moving the step edges to the right, the mean slope
becomes

kR =C

{
aq−1∑
n=1

An(ϕn+1 − ϕn) + Aaq [(ϕaq+1 − ∆ϕ)

− ϕaq ] + Aaq+1[ϕaq+2 − (ϕaq+1 − ∆ϕ)]

+
N−1∑

n=aq+2

An(ϕn+1 − ϕn)

}
, (7)

where, ∆kaqR is defined as the modification of the mean
slope after the qth step edge moves a phase pixel toward
the right. Thus,

∆kaqR = kR − k0 = C∆φ(Aaq+1 − Aaq ). (8)

Similarly, ∆kaqL is defined as the modification of the
mean slope after the qth step edge moves a phase pixel
towards the left. Thus,

∆kaqL = C∆φ(Aaq−1 − Aaq ). (9)

According to Eqs. (8) and (9), the modification of the
mean slope caused by the horizontal movement of the
step edges is related to the differential value of weight
An.

In this letter, we develop a method based on the mod-
ification of the wavefront. The mean slope can be mod-
ified by shifting the position of the steps of the wave-
front, which in turn can be accomplished by moving the
phase step edges. The steering accuracy can thereby be
improved. This method enables the independent move-
ment of the phase steps, which is performed by horizon-
tally moving the step edges. The method proposed in
Ref. [16] enables the movement of the phase steps in
whole, which is performed by selecting the approximate
optimal initial phase offset to produce the ideal linear
wavefront. The new wavefront achieved by this method
deviates from the rules set by the conventional method;
the phase values of phase pixels are not always equal to
the realized quantized phases closest to the ideal linear
wavefront. When the phase steps are few, the exhaustive
method can be used to calculate the distances and direc-
tions of movement to carry out the process of modifying
wavefront. As shown in Fig. 6, if the step edges of the
original staircase wavefront is moved 15 phase pixels to
the right, the optimal steering accuracy can be achieved.
However, when the number of phase steps is large, this
exhaustive method is no longer applicable. Therefore, the
development of a new iterative algorithm is necessary in
modifying the wavefront to improve steering accuracy.

In Eq. (5), the position of step edges is coordinated
and the mean slopes are related. This relationship can
be used to control the modification of wavefront, and im-
prove the steering accuracy. Combining Eqs. (8) and (9),
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we define

∆kR = {∆k1 R,∆k2 R, · · · ,∆kN−1 R} ,

∆kL = {∆k1 L,∆k2 L, · · · ,∆kN−1 L} ,

where ∆kR and ∆kL contain the entire modifications of
the mean slope with all possible horizontal movements of
step edges. The concrete process of the iterative mod-
ification of the wavefront is presented in the following
steps:

1) Based on the aimed steering angle θ, the out-
put staircase wavefront U(n) = φn can be calcu-
lated using the conventional method, where φn =
round(φideal

n
M
2π ) 2π

M , n = 1, 2, · · · , N, and φideal
n =

2πd
λ n sin θ.
2) The mean slope error can be calculated as kerror =

kI − k, where k is the mean slope of staircase wavefront,
and kI is the mean slope of ideal wavefront,

kI = ∆ϕideal =
2πd

λ
sin θ.

3) The statistics of all the positions of the step edges of
the staircase wavefront are obtained and recorded by ar-
ray Q, and the step edge position is defined as the serial
number of the first phase pixel at the left of step edge.

4) In array Q, a step edge at the position of qR always
exists. Thus,

σR = min [|kerror − ∆kR(Q)|]
= |kerror − ∆kR(qR)| . (10)

At the same time, a step edge at the position of qL always
exists. Thus,

σL = min [|kerror − ∆kL(Q)|]
= |kerror − ∆kL(qL)| . (11)

5) When σR > |kerror| and σL > |kerror|, the mean
slope error |kerror| cannot be further reduced. Hence,
the iteration should be stopped, and the angle errors are
obtained in step 7.

6) If σR < σL, |kerror| can be reduced by the step edge
to the right. Therefore, the step edge at qR is horizon-
tally moved to the right. If σR > σL, |kerror| can be
reduced by moving the step edge to the left. Thus, the
step edge at qL is horizontally moved to the left. After
the horizontal movement, step 2 is repeated to continue
the iteration.

7) After iteration, k is calculated. The steering angle
errors can be obtained according to kI and θerror in Eq.
(1).

The flowchart of the iterative modification is shown in
Fig. 7. The main purpose of the iteration is to minimize
the mean slope error kerror = |kI − k|. In Eq. (1) when
kerror has been reduced to the minimum, θerror can also
reach its minimum.

In order to verify the proposed iterative method, we
iteratively modified the wavefront for each steering angle
in Fig. 1; the results are shown in Fig. 8. The mod-
ified realized steering angles are significantly close to
the theoretical angles. At POS 1, the maximal normal-
ized steering error is εnorm,max=0.004, and is reduced by
38 times compared with the conventional method. The

intensity distributions and the corresponding enlarged
drawing are shown in Fig. 9. The performance of wave-
front modification with various combinations of M and
N is also presented. The steering error after the iterative
modification is shown in Fig. 10.

In Fig. 10, the modified steering error εopt
norm,max ≈

2.6N−1M−1 is greatly reduced compared with
εnorm,max = 0.625M−1 caused by the conventional
method. However, when the steering angles are small,
the stair steps in the single period are few. Therefore,
the stair steps used to modify the wavefront iteratively
are insufficient, and the modification accuracy is not sig-
nificantly obvious. When the number of the stair steps
is sufficiently large, the modified steering error can be
stable. Compared with the results of Ref. [16], the fol-
lowing conclusions can be obtained:

1) Compared with the conventional method, the
method based on the iterative modification of the
wavefront can reduce the maximum normalized steer-
ing error by a factor of εnorm,max/εopt

norm,max ≈
0.625M−1/2.6N−1M−1 ≈ 0.25 N . Thus, the reduc-
tion is dependent on the number of the phase pixels.

Fig. 7. Flowchart of the iterative modification.

Fig. 8. Modified steering angles distribution with respect to
the normalized aiming angle θ/θmax (M = 4, N = 64).
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Fig. 9. (a) Intensity distributions with respect to aiming an-
gle and (b) enlarged draw.

Fig. 10. Modified steering error with different combinations
of N and M.

2) As an example, when N = 32 and M = 8, the mean
normalized steering error caused by the conventional
method over the angle region 0−θmax is εnorm ≈ 1.395%.
However, the method based on the iterative modification
of the wavefront can reduce the mean normalized steering
error by multiplying

εnorm/εopt
norm,max ≈ 1.395%/0.029%

≈ 257 ≈ M × N.

3) As an example, when N = 32 and M = 8,
the method based on the iterative modification of the
wavefront only yields the same results as Ref. [16]
in small angles. However, with the angle range of
0.2θmax − θmax, the maximum normalized steering er-
ror caused by the method proposed in Ref. [16] is
εnorm,max ≈ 0.0117%. The method based on the it-
erative modification of the wavefront can reduce the

maximum normalized steering error by multiplying
εnorm,max/εopt

norm,max ≈ 0.0117%/0.00109% ≈ 11. Com-
pared with the method proposed in Ref. [16], the method
based on the iterative modification of the wavefront can
significantly improve the steering accuracy.

4) When M or N increases, the number of steering
angles with steering errors that has been reduced by the
product of N × M will increase.

In conclusion, we have mainly addressed the beam
steering problem, and proposed a novel iterative modi-
fication wavefront, which can reduce the error of mean
slope by moving the step edges horizontally, thus improv-
ing the steering accuracy. Several numerical trails show
that normalized accuracy error with the proposed algo-
rithm is much less than that with conventional methods.
Meanwhile, the steering error can be further reduced by
increasing the number of phase pixels. Moreover, the
steering accuracy, especially of high steering angles, can
be significantly improved using the proposed method.
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